This article was downloaded by:
On: 16 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Energetic Materials

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713770432

Synthesis and spectra of some ${ }^{2} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}$-labeled isomers of $1,3,3-$ trinitroazetidine and 3,3-dinitroazetidinium nitrate
M. D. Coburná M. A. Hiskey ${ }^{\text {ab }}$, J. C. Oxlcy ${ }^{\text {b }}$; J. L. Smith ${ }^{\text {b }}$; W. Zheng ${ }^{\text {b/ }}$ E. Rogers ${ }^{\text {b }}$
${ }^{\text {a }}$ Los Alamos National Laboratory, University of California, Los Alamos, NM ${ }^{\text {b }}$ University of Rhode Island, Kingston, RI

To cite this Article Coburn, M. D. , Hiskey, M. A. , Oxlcy, J. C. , Smith, J. L. , Zheng, W. and Rogers, E.(1998) 'Synthesis and spectra of some ${ }^{2} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}$-labeled isomers of $1,3,3$-trinitroazetidine and 3,3 -dinitroazetidinium nitrate', Journal of Energetic Materials, 16: 2, 73-99
To link to this Article: DOI: 10.1080/07370659808217506
URL: http://dx.doi.org/10.1080/07370659808217506

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


SYNTHESIS AND SPECTRA OF SOME ${ }^{2} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}$-LABELED ISOMERS OF 1,3,3-TRINITROAZETIDINE AND 3,3-DINITROAZETIDINIUM NITRATE

Michacl D. Coburn and Michacl A. Hiskey
University of California, Los Alamos National Laboratory
Los Alamos, NM 87545

Jimmic C. Oxlcy, James L. Smith, Weiyi Zheng, and Evan Rogers
University of Rhode Island Kingston, RI 02881

Abstract

The title compounds were synthesized by utilizing appropriately labeled starting materials and reagents according to literature procedures. ${ }^{1,2}$ The products were characterized by NMR and mass spectral analysis. Unequivocal assignments of all NMR chemical shifts of the unlabeled title compounds and their intermediate precursors were facilitated by the NMR spectra of the labeled compounds along with carbon-hydrogen correlation experiments.

INTRODUCTION

The original synthesis of 1,3,3-trinitroazetidine (TNAZ) was reported in $1990 ;{ }^{3}$ however, the recent development and scale-up of a new, more economical process ${ }^{1}$ has made this material a viable candidate for some melt-cast explosive applications that require performance greater than that of existing TNT-based explosives. Our ongoing study of the thermal decomposition mechanisms of
cnergetic materials required the synthesis of certain ${ }^{2} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{15} \mathrm{~N}$-labeled isomers of TNAZ and 3,3-dinitroazclidinium nitrate, a new high-performance, water soluble explosive. ${ }^{2}$

DISCUSSION

Synthesis

The synthesis routes to the title compounds were adapted from literature procedures ${ }^{1,2}$ (SCHEME 1). Thus, formaldehyde was treated with nitromethane in the presence of a catalytic amount of sodium hydroxide to give a solution of tris(hydroxymethyl)nitromethane (1), which reacted with \underline{t}-butylamine and another molecule of formaldehyde to yield 3-t-butyl-5-hydroxymethyl-5-nitroletrahydro-1,3-oxazine (2). Addition of 2 to a stoichiometric amount of hydrochloric acid in methanol effected cleavage of the ring with elimination of formaldchyde to give $2-\mathrm{t}-$ butylaminomethyl-2-nitro-1,3-propanediol hydrochloride (3). The Mitsunobu reaction of 3 with di-i-propyl azodicarboxylate (DIAD) and triphenylphosphine (TPP) in 2-butanone provided 1-l-butyl-3-hydroxymethyl-3-nitroazetidine hydrochloride (4). Treatment of a solution of 4 with sodium hydroxide neutralized the hydrochloric acid and deformylated the molecule to produce a solution of the sodium salt of 1 -t-butyl-3-nitroazetidine (5), which was oxidatively nitrated with sodium nitrite, potassium ferricyanide, and sodium persulfate to $1-\underline{t}$ butyl-3,3dinitroazctidine (6), a common intermediate to both title compounds. Nitrolysis of 1-t-butyl-3,3-dinitroazetidinium nitrate (7) with ammonium nitrate in acetic anhydride gave 1,3,3-trinitroazetidine (TNAZ) (8). Methyl chloroformate reacted with 6 to produce 1 -methoxycarbonyl-3,3-dinitroazetidine (9), which was easily saponified to a solution of sodium 3,3-dinitroazetidine-1-carboxylate (10).

Treatment of 10 with nitric acid caused immediate decarboxylation to give 3,3dinitroazctidinium nitrate (11). Although unnecessary in the synthesis of 8 and

SCHEME 1

Synthesis of 1,3,3-Trinitroazetidine and 3,3-Dinitroazetidinium Nitrate

3
4

5
6
7
8
1 MeOOOCl

11, a sample of 1-t-butyl-3-hydroxymethyl-3-nitroazetidine (12) was obtained for NMR studies by treatment of 4 with an equivalent amount of sodium carbonate.

The use of formaldchydc- d_{2} and deuterated solvents in the reactions of SCHEME 1 produced isolated quantities of 3-t-butyl-5-hydroxymethyl- $d_{3}-5$ -nitrotctrahydro-1,3-oxazinc- d_{6} (2a), 2-t-butylamino- d-mcthyl- d_{2}-nitro-1,3-propancdiol- d_{6} dculeriochloride (3a), 1-t-butyl-3-hydroxymethyl- d_{3}-3-nitroazctidinc- d_{4} deuteriochloride (4a), 1-t-butyl-3,3-dinitroazctidine- d_{4} (6a), 1-t-butyl-3,3-dinitroazetidinium- d_{4} nitrate (7a), 1,3,3-trinitroazctidine- d_{4} (8a), 1-methoxycarbonyl-3,3-dinitroazctidine- d_{4} (9a), and 3,3-dinitroazctidinium- d_{6} nitrate (11a). The formation of 2a was found to be much slower than that of 2, but the yield was good. However, the deuterium isotope effect not only slowed the deformylative cleavage of the hydrochloride of 2a, but enhanced decomposition side-reactions to result in a much lower yicld of 3a than that obtained for 3. The yiclds of 4a, 6a, and 8a were comparable to those obtaincd for 4,6, and 8; however, the yields of 9 a and 11 a were much lower than those obtained for 9 and 11.

By starting with nitromethane $-{ }^{13} \mathrm{C}, 3-\mathrm{t}$-butyl-5-hydroxymethyl-5-nitrotetrahydro-1,3-oxazine-5- ${ }^{13} \mathrm{C}(2 \mathrm{~b}), 2-\mathrm{t}$-butylaminomethyl-2-nitro-1,3-propanediol-2- ${ }^{13} \mathrm{C}$ hydrochloride (3b), 1-t-butyl-3-hydroxymethyl-3-nitroazetidine-$3-{ }^{13} \mathrm{C}$ hydrochloride (4b), and 1-t-butyl-3,3-dinitroazetidine-3- ${ }^{13} \mathrm{C}(6 \mathrm{~b})$ were
produced in good yields. Treatment of 6 b with nitric acid and nitric- ${ }^{15} \mathrm{~N}$ acid produced 1-t-butyl-3,3-dinitroazetidinium-3- ${ }^{13} \mathrm{C}$ nitrate (7b) and 1-t-butyl-3,3-dinitroazetidinium- $--_{-13} \mathrm{C}$ nitrate- ${ }^{-15} \mathrm{~N}(7 \mathrm{c})$, respectively. Nitrolysis of 7 b with ammonium nitrate in acetic anhydride gave $1,3,3$-trinitroazetidine-3- ${ }^{13} \mathrm{C}(8 \mathrm{~b})$ in good yield. Similar treatment of 7 c with ammonium nitrate- ${ }^{-15} \mathrm{~N}$ in acetic anhydride gave a good yield of 3,3 -dinitro-1-nitro- ${ }^{15} \mathrm{~N}$-azctidine- $3-{ }^{13} \mathrm{C}(8 \mathrm{c})$. Conversion of 6 b to 1 -methoxycarbonyl-3,3-dinitroazetidine- $-{ }^{-13} \mathrm{C}(9 \mathrm{~b})$ and that of 9 b to $3,3-$ dinitroazetidinium-3- ${ }^{13} \mathrm{C}$ nitrate- ${ }^{15} \mathrm{~N}(11 \mathrm{~b})$ were accomplished in fair yields.

When nitromethane- ${ }^{15} \mathrm{~N}$ was employed, 3-1-butyl-5-hydroxymethyl-5-nitro${ }^{15} \mathrm{~N}$-tetrahydro-1,3-oxazine (2c), 2-t-butylaminomethyl-2-nitro- ${ }^{15} \mathrm{~N}$-1,3propanediol hydrochloride (3 c), and 1-I-butyl-3-hydroxymethyl-3-nitro- ${ }^{15} \mathrm{~N}$ azetidine hydrochloride (4c) were obtained in good yields. Deformylation of 4 c followed by oxidative nitration using sodium nitrite- ${ }^{-15} \mathrm{~N}$ produced a fair yield 1-1. butyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{2}$-azetidine (6 c), which was treated with nitric- ${ }^{15} \mathrm{~N}$ acid to give 1-t-butyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{2}$-azetidinium nitrate- ${ }^{15} \mathrm{~N}$ (7d). Nitrolysis of 7 d with ammonium nitrate- ${ }^{15} \mathrm{~N}$ in acetic anhydride gave $1,3,3$-trinitro- ${ }^{-15} \mathrm{~N}_{3}$-azetidine (8 d) in good yield. Treatment of $\mathbf{6 c}$ with methyl chloroformate gave a good yield to 1-methoxycarbonyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{2}$-azetidine (9c), which was converted to 3,3-dinitro- ${ }^{15} \mathrm{~N}_{2}$-azetidinium nitrate- ${ }^{15} \mathrm{~N}(11 \mathrm{c})$ in fair yield.

Deformylation of 4 followed by oxidative nitration using sodium nitrite- ${ }^{15} \mathrm{~N}$ produced 1-I-butyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{1}$-azetidine (6 d), which was treated with nitric acid and nitric- ${ }^{15} \mathrm{~N}$ acid to give 1-t-butyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{1}$-azetidinium nitrate (7e) and 1-t-butyl-3,3-dinitro- ${ }^{-15} \mathrm{~N}_{1}$-azetidinium nitrate- ${ }^{15} \mathrm{~N}(7 \mathrm{f})$, respectively. Nitrolysis of 7 e with ammonium nitrate in acetic anhydride gave 3,3 -dinitro- ${ }^{15} \mathrm{~N}_{1}-1-$ nitroazetidine (8e) in good yield. Similarly, a good yield of 3,3 -dinitro- ${ }^{15} \mathrm{~N}_{1}-1$ -
nitro- ${ }^{15} \mathrm{~N}$-azetidine (8 f) was obtained by nitrolysis of 7 f with ammonium nitrate${ }^{15} \mathrm{~N}$ in acetic anhydride. Treatment of $\mathbf{6 d}$ with methyl chloroformate gave a good yield of 1-methoxycarbonyl-3,3-dinitro- ${ }^{15} \mathrm{~N}_{1}$-azetidine (9 d), which was converted to 3,3-dinitro ${ }^{15} \mathrm{~N}_{1}$-azetidinium nitrate (11 d) in fair yield. Treatment of 6 with nitric- ${ }^{15} \mathrm{~N}$ acid gave 1-t-butyl-3,3-dinitroazetidinium nitrate- ${ }^{-15} \mathrm{~N}(7 \mathrm{~g})$, which was nitrolyzed with ammonium nitrate- ${ }^{15} \mathrm{~N}$ in acetic anhydride to 3,3-dinitro-1-nitro${ }^{15} \mathrm{~N}$-azctidine (8g).

NMR Spectra

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ is very complex in that all the ring protons are non-equivalent because the t-butyl group freezes the compound in a single chair conformation, as shown below. Dipole moment measurements of a series of substituted 5-nitrotetrahydro-1,3-oxazines, including 3-1-butyl-5-methyl-5-nitrotetrahydro-1,3-oxazine, compared with calculated values indicate that the nitro group is axial in every example. ${ }^{4}$

2
The spectra of the labeled compounds $2 \mathbf{a}-\mathbf{c}$ in conjunction with a carbon-hydrogen correlation study and the gem- ${ }^{1} \mathrm{H}$ coupling constants have allowed unequivocal assignment of all the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (TABLE 1). The ${ }^{13} \mathrm{C}-$ NMR spectrum of 2a shows that the shifts at 26.1 ppm and 52.2 ppm , which are not coupled to ${ }^{2} \mathrm{H}$, are from the t-butyl carbons. In the ${ }^{23} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathbf{2 b}$, the
${ }^{13} \mathrm{C}$-labeled carbon-5 (89.2 ppm) couples with the hydroxymethyl carbon (63.9 ppm, 38 Hz), carbon-4 ($48.6 \mathrm{ppm}, 39 \mathrm{~Hz}$), and carbon-6 ($67.9 \mathrm{ppm}, 40 \mathrm{~Hz}$), but not carbon-2 (80.7 ppm). Surprisingly, the central 1 -butyl carbon of 2 b at 52.2 ppm was also split by the $5 \cdot{ }^{13} \mathrm{C}(3 \mathrm{~Hz})$. The assignment of the 48.6 ppm shift to carbon-4 is based upon the similarity of this shift to other methylene carbons between a protonated $\underline{-}$-butylamino group and carbon substituted with nitro and hydroxymethyl groups, such as 3 (43.7 ppm) and 4 (53.3 ppm). In addition, carbon-6 would be expected to be deshielded more by its adjacent oxygen than carbon-4 by its adjacent nitrogen. As expected, the nitro ${ }^{15} \mathrm{~N}$ in 2 c couples with carbon-5. However, the observations that the ${ }^{13} \mathrm{C}$-labeled carbon- 5 in 2 b couples only with the equatorial proton at 3.60 ppm on carbon-4 and that the nitro- ${ }^{15} \mathrm{~N}$ in 2 c couples only with the axial proton at 2.62 ppm on carbon-4 are not understood.

Compound 3, as illustrated below, is prochiral and thus, the gem protons on the hydroxymethyl groups are non-equivalent and split each other by 12 Hz (TABLE 2).

3
As expected, all the methylene carbons in the ${ }^{13} \mathrm{C}$-NMR spectrum of 3 a were split into pentets and the ${ }^{13} \mathrm{C}$-labeled carbon- 2 of $\mathbf{3 b}$ coupled with all methylene carbons and also the central \ddagger-butyl carbon in the ${ }^{13} \mathrm{C}$-NMR spectrum. The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 b}$ showed coupling of the ${ }^{13} \mathrm{C}$-labeled carbon-2 with the t butylaminomethylenc protons at $3.86 \mathrm{ppm}(3 \mathrm{~Hz})$ and the hydroxymethyl protons at
$4.22 \mathrm{ppm}(3 \mathrm{~Hz})$, but not the hydroxymethyl protons at 3.99 ppm . In contrast, the ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{3 c}$ showed coupling of ${ }^{15} \mathrm{~N}$ with the t -butylaminomethylene protons at $3.86 \mathrm{ppm}(3 \mathrm{~Hz})$ and the hydroxymethyl protons at $3.99 \mathrm{ppm}(4 \mathrm{~Hz})$, but not the hydroxymethyl protons at 4.21 ppm .

The methylene protons of the azetidine ring and the hydroxymethyl group of 4 appear in the ${ }^{1} \mathrm{H}$-NMR spectrum at $25^{\circ} \mathrm{C}$ as very broad singlets, but at $80^{\circ} \mathrm{C}$ the azctidine ring protons become two doublets $(\mathrm{J}=12 \mathrm{~Hz})$ and the hydroxymethyl protons are a sharp singlet (TABLE 3). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{4 b}$ at $80^{\circ} \mathrm{C}$ showed coupling of the ${ }^{13} \mathrm{C}$-labcled carbon-3 with the hydroxymethylene protons at $4.75 \mathrm{ppm}(2 \mathrm{~Hz})$ and the azctidine ring protons at $5.29 \mathrm{ppm}(5 \mathrm{~Hz})$, but not the azetidine ring protons at 5.04 ppm . In contrast, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 4 c at $80^{\circ} \mathrm{C}$ showed coupling of ${ }^{15} \mathrm{~N}$ with the hydroxymethylene protons at $4.75 \mathrm{ppm}(3$ Hz) and the azetidine ring protons at $5.04 \mathrm{ppm}(2 \mathrm{~Hz})$, but not the azetidine ring protons at 5.29 ppm . At $25^{\circ} \mathrm{C}$, carbon-3 appeared as two distinct broad shifts at 80.2 ppm and 83.1 ppm in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of a concentrated solution of 4 and at 80.0 ppm and 82.8 ppm in the ${ }^{13} \mathrm{C}$-NMR spectrum of a dilute solution of $\mathbf{4 b}$. At $80^{\circ} \mathrm{C}$, the two carbon- $\mathbf{3}$ shifts of $\mathbf{4}$ and $\mathbf{4 b}$ collapsed to broad singlets at $\mathbf{8 2 . 2}$ ppm and 82.1 ppm , respectively. As a result of the broadness of the carbon-3 shifts, coupling of the nitro- ${ }^{15} \mathrm{~N}$ with carbon-3 was not observed in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 4 c . Similarly, in the ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra at $25^{\circ} \mathrm{C}$ both the azetidine nitrogen and the nitro nitrogen of 4 as well as the nitro nitrogen of 4 e gave two distinct signals, which collapsed to single peaks at $80^{\circ} \mathrm{C}$. These results suggest that $\mathbf{4}$ is an cquilibrium mixture of two isomers, one with the t-butyl group on the same side of the ring as the hydroxymethyl group and the other with the t-butyl
group on the same side of the ring as the nitro group.

4
Equilibration would require deprotonation of one species, followed by protonation to give the other isomer, which is sufficiently slow at $25^{\circ} \mathrm{C}$ to allow detection of both isomers by NMR, but is too fast at $80^{\circ} \mathrm{C}$ to allow detection of both isomers. The NMR spectra of the frec base 12 are qualitatively similar to those of 4 at $80^{\circ} \mathrm{C}$.

The NMR-spectra of 6-6d, 7-7f, 8-8g, 9-9d, and 11-11d are given in TABLES 4, 5, 6, 7, and 8, respectively. In every instance the ${ }^{1} \mathrm{H}$-NMR spectra of the $3-{ }^{13} \mathrm{C}$ isomers exhibited coupling of 5 Hz between ${ }^{13} \mathrm{C}$ and the azctidine ring protons and those of the nitro- ${ }^{15} \mathrm{~N}$ isomers showed coupling of $2-3 \mathrm{~Hz}$ between ${ }^{15} \mathrm{~N}$ and the ring protons. In addition, the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the nitro- ${ }^{15} \mathrm{~N}$ isomers showed coupling between ${ }^{15} \mathrm{~N}$ and carbon- 3 of $11-14 \mathrm{~Hz}$. As in the spectra of some of its precursors, the ${ }^{13} \mathrm{C}$-NMR spectrum of 6 b showed coupling between 3${ }^{13} \mathrm{C}$ and the central $\frac{1}{}$-butyl carbon.

Mass Spectra

Mass spectral analysis of the TNAZ isomers was performed using electron impact (EI) (Table 9) as well as chemical ionization (CI) with methanc gas (Table 10). For El the molecular weight was consistent with the isotopic assignment. For Cl the parent P peak was not observed, but fragments representing reactions
with methane $(\mathrm{P}+1, \mathrm{P}+29, \mathrm{P}+41)$ were observed, allowing inference as to the parent mass. Other principal fragments were consistent with loss of nitro and nitroso groups.

EXPERIMENTAL METHOD

All NMR spectra were obtained on a JEOL GSX high resolution Fourier transform spectrometer. Resonance frequencies for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ were 399.65 $\mathrm{MHz}, 100.40 \mathrm{MHz}$, and 40.40 MHz , respectively. All ${ }^{13} \mathrm{C}$-NMR spectra were obtained with proton decoupling. The ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectra were obtained with singlepulse gated decoupling without nuclear Overhauser enhancement and are relative to and upfield of external nitromethane $=0$. TNAZ isotopic purity was assessed using a mass spectrometer (Finnigan-MAT TSQ 700) with a gas chromatographic (GC, Varian 3400) inlet. The GC was equipped with a capillary column (J\&W DB-5MS, $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d.). An acetone solution of the TNAZ (0.02%) was injected $\left(200^{\circ} \mathrm{C}\right)$ into the GC at an initial temperature of $80^{\circ} \mathrm{C}$; after a one minute hold, the temperature was ramped to $210^{\circ} \mathrm{C}$ at $7.5^{\circ} \mathrm{C} / \mathrm{min}$. The transfer line temperature was $200^{\circ} \mathrm{C}$. Electron impact ionization (EI) was accomplished using 70 cV and 400 uA emission. The ion source was operated at $150^{\circ} \mathrm{C}$, and the scan range for El was 35 400 amu . Chemical ionization (Cl) was accomplished using methane gas; solid samples were introduced via a solids probe $\left(25-35^{\circ} \mathrm{C}\right)$. Melting points were determined on all solid products and were within $2^{\circ} \mathrm{C}$ of literature values.

3-t-Butyl-5-hydroxymethyl-5-nitrotetrahydro-1,3-oxazines (2-2c)

To a slurry of paraformaldehyde $(2.16 \mathrm{~g}, 0.072 \mathrm{~mol})$ and 40% sodium hydroxide (1 drop) in water (10 ml) was added the appropriate nitromethane (1.0 g ,
0.016 mol). The mixture was stirred at 60° for one h , then t -butylamine (1.70 ml , $1.17 \mathrm{~g}, 0.016 \mathrm{~mol}$) in water (3 ml) was added dropwise at 60°. Solid began to precipitate during the addition. The mixture was held at 60° for 5 h , cooled, and filtered. The solid was washed with water and dried to give the 3 -l-butyl-5-hydroxymethyl-5-nitrottrahydro-1,3-oxazine in the yield reported in TABLE 1 . In the case of 2 a , paraformaldehyde- $d_{2}, 40 \%$ sodium deutroxide, deuterium oxide, and nitromethane- d_{3} werc used.

2-t-Butylaminomethyl-2-nitro-1,3-propanediol Hydrochlorides (3-3c)

To a solution of concentrated hydrochloric acid ($1.0 \mathrm{ml}, 0.012 \mathrm{~mol}$) in methanol (20 ml) was added the appropriate 3 -t-butyl- 5 -hydroxymethyl-5-nitrotetrahydro-1,3-oxazine (0.012 mol). The resulting mixture was heated under gentle reflux for 20 h to drive the reaction to completion. The solvent was removed urder reduced pressure and the residue was stirred in 2 -propanol (20 ml). After the mixture had been chilled in the freezer, the solid was collected by filtration, washed with a litule cold 2-propanol, and dried to give the 2-t-butylaminomethyl-2-nitro-1,3-propanediol hydrochloride in the yield reported in TABLE 2 . In the case of 3a, methyl alcohol-d and 37% deuterium chloride in deuterium oxide were employed in the reaction.

1-t-Butyl-3-hydroxymethyl-3-nitroazctidine Hydrochlorides (4-4c)

To a mixture of the appropriate 2-t-butylaminomethyl-2-nitro-1,3propanediol hydrochloride (0.01 mol) and di-i-propyl azodicarboxylate (2.22 g , 0.011 mol) in 2-butanone (5 ml) is added dropwise a solution of triphenylphosphine ($2.88 \mathrm{~g}, 0.011 \mathrm{~mol}$) in 2-butanone (2.5 ml) at $50^{\circ} \mathrm{C}$. After completed addition the mixture was filtered hot to give a solid, which was washed
with a little 2-butanone and air dried to give the 1-t-butyl-3-hydroxymethyl-3nitroazetidine hydrochloride in the yield reported in TABLE 3.

1-t-Butyl-3-hydroxymethyl-3-nitroazetidine (12)

To a stirred solution of sodium carbonate $(2.35 \mathrm{~g}, 0.022 \mathrm{~mol})$ in water (50 $\mathrm{ml})$ was added 4 ($5.0 \mathrm{~g}, 0.022 \mathrm{~mol}$). The resulting mixture was extracted with chloroform ($2 \times 25 \mathrm{ml}$) and the combined extracts were dried over magnesium sulfate. The solvent was cvaporated under reduced pressure to yicld 4.03 g (96\%) of 1-t-butyl-3-hydroxymethyl-3-nitroazetidine (12), mp 112-113 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (chloroform- d): $0.94(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), 3.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz})(\mathrm{C}-2,4), 3.61(\mathrm{bs}$, $1 \mathrm{H})(\mathrm{OH}), 3.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz})(\mathrm{C}-2,4), 4.19(\mathrm{~s}, 2 \mathrm{H})\left(\mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (chloroform-d): $23.6(\mathrm{t}-\mathrm{Bu}), 52.1(\mathrm{t}-\mathrm{Bu}), 52.5(\mathrm{C}-2,4), 64.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 81.8(\mathrm{C}-$ 3). ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ (chloroform-d): $11.2\left(\mathrm{CNO}_{2}\right),-342.1(\mathrm{~N}-1)$.

1-t-Butyl-3,3-dinitroazetidines (6-6d)

To a solution of the appropriate 1-t-butyl-3-hydroxymethyl-3-nitroazelidine hydrochloride (0.0062 mol) in water (10 ml) was added 40% sodium hydroxide $(1.86 \mathrm{~g}, 0.0186 \mathrm{~mol})$. The mixture was stirred at ambient temperature until a clear solution was obtained ($\sim 2.5 \mathrm{~h}$), then the solution was chilled to $10^{\circ} \mathrm{C}$. To the chilled solution was added a solution of sodium nitrite ($1.71 \mathrm{~g}, 0.0248 \mathrm{~mol}$) and potassium ferricyanide ($0.20 \mathrm{~g}, 0.00062 \mathrm{~mol}$) in water (5 ml), followed by solid sodium persulfate ($1.86 \mathrm{~g}, 0.0078 \mathrm{~mol}$) in one portion. Cooling was discontinued and the mixture was stirred at ambient temperature for one h. The mixture was extracted with dichloromethane ($5 \times 5 \mathrm{ml}$), the extracts were dried (magnesium
sulfate) and the solvent was evaporated under reduced pressure to give the 1-t-butyl-3,3-dinitroazetidine in the yield reported in TABLE 4.

1-t-Butyl-33-dinitroazetidinium Nitrates (7-7f)

To a solution of the appropriate 1-f-butyl-3,3-dinitroazetidine (0.002 mol) in dichloromethanc (5 ml) was added the appropriate nitric acid (0.002 mol). The resulting mixture was evaporated to dryness and the residue was slurried with dichloromethane and filtered. The collected solid was washed with dichloromethane and dried to yield the 1-t-butyl-3,3-dinitroazetidinium nitrate in the yield reported in TABLE 5.

1,3,3-Trinitroazetidines (8-8g)

To the appropriate 1-1-butyl-3,3-dinitroazetidinium nitrate (0.001 mol) was added acetic anhydride (2 ml) followed by the appropriate ammonium nitrate (0.001 mol). The mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h , cooled, and treated with water (2.5 $\mathrm{ml})$. The mixture was stirred at $15^{\circ} \mathrm{C}$ for 16 h , then more water (5 ml) was added and the mixture was cooled to $5^{\circ} \mathrm{C}$. The product was collected by filtration, washed with water, and dried to give the 1,3,3-trinitroazetidine in the yield reported in TABLE 6.

1-Methoxycarbonyl-3,3-dinitroazetidines (9-9d)

To a solution of the appropriate 1-t-butyl-3,3-dinitroazetidine (0.002 mol) in dichloromethane (2 ml) was added dibasic sodium phosphate ($0.80 \mathrm{~g}, 0.0056 \mathrm{~mol}$) and methyl chloroformate ($2.0 \mathrm{ml}, 0.026 \mathrm{~mol}$). The mixture is stirred vigorously at ambient temperature for 8 days. The mixture was filtered, the filter cake was
washed with dichloromethane, and the combined filtrate evaporated to dryness under reduced pressure. The residue was washed with petroleum ether to remove 1-1-butylamino-3-chloro-2,2-dinitropropane and dried to give the 1 -methoxycarbonyl-3,3-dinitroazctidine in the yield reported in TABLE 7.

3,3-Dinitroazetidinium Nitrates (11-11d)

The appropriate 1 -methoxycarbonyl-3,3-dinitroazetidine (0.0025 mol) is dissolved in methanol (6 ml), then 40% sodium hydroxide ($0.536 \mathrm{~g}, 0.00536 \mathrm{~mol}$) and water (0.3 ml) was added. After 2 h at ambient temperature conversion to the sodium salt of the carbamic acid was complete. To the resulting solution was added concentrated nitric acid ($1.0 \mathrm{ml}, 0.008 \mathrm{~mol}$). After the gas evolution was completc, the methanol was evaporated and water (10 ml) and 40% sodium hydroxide (0.80 g, 0.008 mole) was added. The solution was extracted with dichloromethane (3×5 ml). The extracts were dried over magnesium sulfate and treated with the appropriate nitric acid (0.0025 mol). The resulting mixture was evaporated to dryness and the residue was taken up in dichloromethane. The solid was collected by filtration and dried to give the 3,3-dinitroazetidinium nitrate in the yield reported in TABLE 8.
3-1-Butyl-5-hydroxymethyl-5-nitro

	Yield	NMR Chemical Shifts (ppm) ${ }^{\text {a }}$		
Cpd.	(\%)	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{15} \mathrm{~N}$
2	90	$\begin{gathered} 1.00(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), 2.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}-4), \\ 3.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{C}, \mathrm{C}), 3.6 \mathrm{~S}(\mathrm{~d}, 1 \mathrm{H}, \\ \left.\mathrm{J}_{1 \mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}-6), 3.66(\mathrm{~s}, 2 \mathrm{H})(\mathrm{CH} 2 \mathrm{OH}), \\ 3.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=8 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}-2), 4.47(\mathrm{~d}, 1 \mathrm{H}, \\ \left.\mathrm{J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{e}, \mathrm{C}-6), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{HH}}=8 \mathrm{~Hz}\right)(\mathrm{c}, \mathrm{C}-2), \\ 5.40(\mathrm{~s}, 1 \mathrm{H})(\mathrm{OH}) . \end{gathered}$	$\begin{gathered} 26.1(\mathrm{t}-\mathrm{Bu}), 48.6(\mathrm{C}-4), 52.2 \\ (\mathrm{t}-\mathrm{Bu}), 63.9\left(\mathrm{CH} \mathrm{C}_{2} \mathrm{OH}\right), 68.0 \\ (\mathrm{C}-6), 80.7(\mathrm{C}-2), 89.2(\mathrm{C}-5) . \end{gathered}$	$\begin{gathered} 10.1 \\ \left(\mathrm{NO}_{2}\right) \\ -321.2 \\ (\mathrm{~N}-3) \end{gathered}$
2a	80	1.00 (s, 9H)(t-Bu).	$\begin{gathered} 26.1(\mathrm{t}-\mathrm{Bu}), 47.8\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=20 \mathrm{~Hz}\right) \\ (\mathrm{C}-4), 52.2(\mathrm{t}-\mathrm{Bu}), 63.1 \\ \left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=22 \mathrm{~Hz}\right)\left(\mathrm{CD} \mathrm{CD}_{2} \mathrm{OD}\right) \\ 67.0\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C} . \mathrm{D}}=21 \mathrm{~Hz}\right)(\mathrm{C}-6), 79.7 \\ \left(\mathrm{p}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{D}}=22 \mathrm{~Hz}\right)(\mathrm{C}-2), 88.7(\mathrm{C}-5) . \end{gathered}$	
2b	84	$\begin{gathered} 1.00(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), 2.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}-4), \\ 3.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{H}}=3 \mathrm{~Hz}\right)(\mathrm{e}, \mathrm{C}-4), 3.64 \\ \left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}), 3.65(\mathrm{H}, 2 \mathrm{H})(\mathrm{CH}, \mathrm{OH}), \\ 3.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=8 \mathrm{~Hz}\right)(\mathrm{a}, \mathrm{C}-2), 4.47(\mathrm{~d}, 1 \mathrm{H}, \\ \left.\mathrm{J}_{\mathrm{HH}}=12 \mathrm{~Hz}\right)(\mathrm{e}, \mathrm{C}-6), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}_{\mathrm{H} \cdot \mathrm{H}}=8 \mathrm{~Hz}\right)(\mathrm{e}, \mathrm{C}-2), \\ 5.40(\mathrm{~s}, 1 \mathrm{H})(\mathrm{OH}) . \end{gathered}$	$\begin{gathered} 26.1(\mathrm{t}-\mathrm{Bu}), 48.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}}=39 \mathrm{~Hz}\right) \\ (\mathrm{C}-4), 52.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=3 \mathrm{~Hz}\right)(\mathrm{t}-\mathrm{Bu}), \\ 63.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}}=38 \mathrm{~Hz}\right)(\mathrm{CH}=\mathrm{CH}), \\ 67.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{C}}=40 \mathrm{~Hz}\right)(\mathrm{C}-6), \\ 80.7(\mathrm{C}-2), 89.2(\mathrm{C}-5) . \end{gathered}$	

[^0]TABLE 1 (Continued)
3-t-Butyl-5-hydroxymethyl-5-nitrotetrahydro-1,3-oxazines

Spectra determined as methylsulfoxide- d_{6} solutions. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are relative to tetramethylsilane $=0$. All ${ }^{15} \mathrm{~N}$
shifts are relative to and upfteld of extemal nitromethane $=0$.

$$
\text { NMR Chemical Shifts }(\mathrm{ppm})^{\mathrm{a}}
$$
1H
\[

$$
\begin{array}{ll}
{ }^{1} \mathrm{H} & { }^{13} \mathrm{C}
\end{array}
$$
\]

$$
\begin{gathered}
24.6(\mathrm{t}-\mathrm{Bu}), 43.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}}=42 \mathrm{~Hz}\right) \\
\left(\mathrm{CH} \mathrm{C}_{2} \mathrm{NH}-\mathrm{t}-\mathrm{Bu}\right), 59.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=4 \mathrm{~Hz}\right)(\mathrm{t}- \\
\mathrm{Bu}), 63.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{Cc}}=37 \mathrm{~Hz}\right)\left(\mathrm{CH}_{2} \mathrm{OH}\right) \\
92.7\left(\mathrm{CNO}_{2}\right) .
\end{gathered}
$$

${ }^{15} \mathrm{~N}$
$6.8\left(\mathrm{CNO}_{2}\right)$
-321.6
$\left(-\mathrm{NH}_{2}-\mathrm{t}-\mathrm{Bu}\right)$

$$
\begin{gathered}
24.3(\mathrm{t}-\mathrm{Bu}), 42.9\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=22 \mathrm{~Hz}\right) \\
\left(\mathrm{CD}_{2} \mathrm{ND}-\mathrm{t}-\mathrm{Bu}\right), 59.3(\mathrm{t}-\mathrm{Bu}), 61.9 \\
\left(\mathrm{p}, \mathrm{~J}_{\mathrm{c}-\mathrm{D}}=22 \mathrm{~Hz}\right)\left(\mathrm{CD}_{2} \mathrm{OD}\right), 91.8\left(\mathrm{CNO}_{2}\right) .
\end{gathered}
$$

$$
\begin{gathered}
1.47(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), 3.87(\mathrm{~s}, 2 \mathrm{H}) \\
(\mathrm{CH}, \mathrm{NH}-\mathrm{tBu}), 4.00\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}_{\mathrm{H} H}=12 \mathrm{H}\right. \\
(\mathrm{CH}-\mathrm{H}) 420(\mathrm{~d} 2 \mathrm{H}, \mathrm{~J}
\end{gathered}
$$

'(ng-i-HN'H
$59.6(\mathrm{t}-\mathrm{Bu}), 62.9\left(\mathrm{CH}_{2} \mathrm{OH}\right)$,
$92.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c} \cdot \mathrm{N}}=6 \mathrm{~Hz}\right)\left(\mathrm{CNO}_{2}\right)$.
${ }^{2}$ Spectra determined as deuterium oxide solutions. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are relative to tetramethylsilane $=0$. The natural abundance ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ spectrum of 3 was obtained on a saturated solution containing chromium(III). All ${ }^{15} \mathrm{~N}$ shifts are relative to and upficld of external nitromethane $=0$.

$$
\begin{gathered}
24.5(\mathrm{t}-\mathrm{Bu}), 43.7\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{t}-\mathrm{Bu}\right), 59.6 \\
(\mathrm{t}-\mathrm{Bu}), 62.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 92.7\left(\mathrm{CNO}_{2}\right) .
\end{gathered}
$$

TABLE 3
1-t-Butyl-3-hydroxymethyl-3-nitroa

Yield \quad NMR Chemical Shifts (ppm) ${ }^{\text {a }}$					
Cpd.	(\%)		${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{15} \mathrm{~N}$
4	80	@ $25^{\circ} \mathrm{C}$: 4.58 (bs	$\begin{aligned} & 1.39(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}) \\ & 4.30(\mathrm{bs}, 2 \mathrm{H})\left(\mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), \\ & 2 \mathrm{H})(\mathrm{C}-2,4), 4.9(\mathrm{Bs}, 2 \mathrm{H})(\mathrm{C}-2,4) \end{aligned}$	$\begin{gathered} 22.4(\mathrm{t}-\mathrm{Bu}), 53.2(\mathrm{C}-2,4), 61.0(\mathrm{l}-\mathrm{Bu}) \\ 62.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 80.3(\mathrm{~b})(\mathrm{C}-3), 83.1(\mathrm{~b})(\mathrm{C}-3) \end{gathered}$	$\begin{aligned} & 1.8,2.7 \\ & \left(\mathrm{CNO}_{2}\right) \\ & -323.2, \\ & -326.2 \\ & (\mathrm{~N}-1) \end{aligned}$
		$\frac{@ 80^{\circ} \mathrm{C}: 1}{\left(\mathrm{CH}_{2} \mathrm{OH}\right)} \begin{gathered} 5.29 \end{gathered}$	$\begin{aligned} & 34(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), 4.76(\mathrm{~s}, 2 \mathrm{H}) \\ & 5.04\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}_{\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{C}-2,4), \\ & \left(\mathrm{d}, 2 \mathrm{H}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=12 \mathrm{~Hz}\right)(\mathrm{C}-2,4) . \end{aligned}$	$\begin{gathered} 22.9(\mathrm{t}-\mathrm{Bu}), 53.7(\mathrm{C}-2,4), 61.6(\mathrm{t}-\mathrm{Bu}), \\ 63.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 82.2(\mathrm{~b})(\mathrm{C}-3) . \end{gathered}$	$\begin{gathered} 3.0 \\ \left(\mathrm{CNO}_{2}\right) \\ -32.3 \\ (\mathrm{~N}-1) \end{gathered}$
4a	69	@ $25^{\circ} \mathrm{C}$:	1.37 (s, 9H)(t-Bu).	$\begin{gathered} 22.1(\mathrm{t}-\mathrm{Bu}), 52.6\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{D}}=23 \mathrm{~Hz}\right)(\mathrm{C}-2,4) \\ 60.8(\mathrm{t}-\mathrm{Bu}), 61.4\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=31 \mathrm{~Hz}\right)\left(\mathrm{CD}_{2} \mathrm{OD}\right), \\ 79.83(\mathrm{~b})(\mathrm{C}-3) . \end{gathered}$	
		@ $80^{\circ} \mathrm{C}$:	$1.84(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu})$.	$\begin{gathered} 22.6(\mathrm{t}-\mathrm{Bu}), 53.3\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=23 \mathrm{~Hz}\right)(\mathrm{C}-2,4), \\ 61.6(\mathrm{t}-\mathrm{Bu}), 62.3\left(\mathrm{p}, \mathrm{~J}_{\mathrm{CD}}=24 \mathrm{~Hz}\right)\left(\mathrm{CD}_{2} \mathrm{OD}\right), \\ 82.1(\mathrm{C}-3) . \end{gathered}$	

TABLE 3 (Continued)
1-!-Butyl-3-hydroxymethyl-3-nitroazetidine Hydrochlorides

$\underset{\sim}{Z}$

$2.8,1.6$
$\left(\mathrm{CNO}_{2}\right)$
$3.0\left(\mathrm{CNO}_{2}\right)$
${ }^{\mathbf{a}}$ Spectra determined as deuterium oxide solutions. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are relative to tetramethylsilane $=0$. All ${ }^{15} \mathrm{~N}$ shifts
are relative to and upfield of external nitromethane $=0$.
TABLE 4
1-t-Butyl-3,3-dinitroazetidines

Yield \quad NMR Chemical Shifts (ppm) ${ }^{\text {a }}$				
Cpd.	(\%)	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{15} \underline{N}$
6	94	$\begin{gathered} 0.96(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), \\ 4.03(\mathrm{~s}, 4 \mathrm{H})(\mathrm{C}-2,4) \end{gathered}$	$\begin{gathered} 23.5(\mathrm{t}-\mathrm{Bu}), 52.4(\mathrm{t}-\mathrm{Bu}), \\ 55.0(\mathrm{C}-2,4), 107.6(\mathrm{C}-3) . \end{gathered}$	$\begin{aligned} & -12.1\left(\mathrm{CNO}_{2}\right) \\ & -228.8(\mathrm{~N}-1) \end{aligned}$
63	92	$0.95(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu})$.	$\begin{gathered} 23.5(\mathrm{t}-\mathrm{Bu}), 52.3(\mathrm{t}-\mathrm{Bu}), \\ 54.4\left(\mathrm{p}, \mathrm{~J}_{\mathrm{C}-\mathrm{D}}=24 \mathrm{~Hz}\right)(\mathrm{C}-2,4), 107.3(\mathrm{C}-3 \end{gathered}$	
$6 b$	94	$\begin{gathered} 0.96(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}), \\ 4.03\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}_{\mathrm{c}-\mathrm{H}}=5 \mathrm{~Hz}\right)(\mathrm{C}-2,4) . \end{gathered}$	$\begin{gathered} 23.5(\mathrm{t}-\mathrm{Bu}), 52.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=5 \mathrm{~Hz}\right)(\mathrm{t}-\mathrm{Bu}) \\ 55.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=33 \mathrm{~Hz}(\mathrm{C}-2,4),-107.6(\mathrm{C}-3)\right. \end{gathered}$	
$6 c$	53	$\begin{gathered} 0.93(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}) \\ 4.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{~J}_{\mathrm{N}-\mathrm{H}}=3 \mathrm{~Hz}\right)(\mathrm{C}-2,4) . \end{gathered}$	$\begin{gathered} 23.5(\mathrm{t}-\mathrm{Bu}), 52.4(\mathrm{t}-\mathrm{Bu}), 54.9(\mathrm{C}-2,4) \\ 107.5\left(\mathrm{t}, \mathrm{~J}_{\mathrm{C}-\mathrm{N}}=11 \mathrm{~Hz}\right)(\mathrm{C}-3) . \end{gathered}$	-12.5 ($\left.\mathrm{CNO}_{2}\right)$
6d	92	$\begin{gathered} 0.96(\mathrm{~s}, 9 \mathrm{H})(\mathrm{t}-\mathrm{Bu}) \\ 4.02\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}_{\mathrm{N} \cdot \mathrm{H}}=3 \mathrm{~Hz}\right)(\mathrm{C}-2,4) . \end{gathered}$	$\begin{gathered} 23.5(\mathrm{t}-\mathrm{Bu}), 52.4(\mathrm{t}-\mathrm{Bu}), 55.0(\mathrm{C}-2,4), \\ 107.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{N}}=11 \mathrm{~Hz}\right)(\mathrm{C}-3) . \end{gathered}$	-12.4 ($\left.\mathrm{CNO}_{2}\right)$

TABLE 5
1-t-Butyl-3,3-dinitroazetidinium Nitrates

${ }^{2}$ Spectra determined as dcuterium oxide solutions. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are relative to tetramethylsilane $=0$. The natural abundance ${ }^{15} \mathrm{~N}$-NMR spectrum of 7 was obtained on a saturated solution containing chromium(III). All ${ }^{15} \mathrm{~N}$ shifts are relative to and upfield of external nitromethane $=0$.
1，3，3－Trinitroazetidines
$64.2\left(\mathrm{p}, \mathrm{J}_{\mathrm{c} \cdot \mathrm{D}}=25 \mathrm{~Hz}\right)(\mathrm{C}-2,4), 104.8(\mathrm{C}-3)$
$64.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c} \cdot \mathrm{c}}=35 \mathrm{~Hz}\right)(\mathrm{C}-2,4), 104.9(\mathrm{C}-3)$
$64.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c} \cdot \mathrm{c}}=35 \mathrm{~Hz}\right)(\mathrm{C}-2,4), 105.0(\mathrm{C}-3)$
$64.7(\mathrm{~d}, \mathrm{~J} \cdot \mathrm{c} . \mathrm{c}=35 \mathrm{~Hz})(\mathrm{C}-2,4), 105.0(\mathrm{C}-3)$
$64.7(\mathrm{C}-2,4), 105.0\left(\mathrm{t}, \mathrm{J}_{\mathrm{C} \cdot \mathrm{N}}=11 \mathrm{~Hz}\right)(\mathrm{C}-3)$
$64.7(\mathrm{C}-2,4), 105.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{N}}=11 \mathrm{~Hz}\right)(\mathrm{C}-3)$
$64.7(\mathrm{C}-2,4), 105.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C} \cdot \mathrm{N}}=11 \mathrm{~Hz}\right)(\mathrm{C}-3)$
 （t゙でつ）（s）Sts

 relative to and upfield of external nitromethane $=0$ ．
TABLE 7
1-Methoxycarbonyl-3,3-dinitroazetidines

Yield NMR Chemical Shifts (ppm) ${ }^{\text {a }}$				
Cpd.	(\%)	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{15} \mathrm{~N}$
9	88	3.69 (s, 3H), 4.75 (s, 4H).	$\begin{aligned} & 53.2\left(\mathrm{CH}_{3}\right), 58.0(\mathrm{C}-2,4), \\ & 106.1(\mathrm{C}-3), 156.1(\mathrm{C}=0) \end{aligned}$	$\begin{aligned} & -15.8\left(\mathrm{CNO}_{2}\right) \\ & -324.1(\mathrm{~N}-1) \end{aligned}$
9a	49	$3.68(\mathrm{~s}, 3 \mathrm{H})$.	$\begin{gathered} 53.2\left(\mathrm{CH}_{3}\right), 57.5\left(\mathrm{p}, \mathrm{~J}_{\mathrm{CD}}=24 \mathrm{~Hz}\right)(\mathrm{C}-2,4) \\ 105.9(\mathrm{C}-3), 156.2(\mathrm{C}=\mathrm{O}) . \end{gathered}$	
9 b	65	$3.69(\mathrm{~s}, 3 \mathrm{H}), 4.75$ (d, 4H, $\left.\mathrm{J}_{\mathrm{CH}-\mathrm{H}}=5 \mathrm{~Hz}\right)$.	$\begin{aligned} & 53.2\left(\mathrm{CH}_{3}\right), 58.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=33 \mathrm{~Hz}\right)(\mathrm{C}-2,4), \\ & 106.2(\mathrm{C}-3), 156.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}-\mathrm{c}}=7 \mathrm{~Hz}\right)(\mathrm{C}=\mathrm{O}) . \end{aligned}$	
9 c	78	$3.68(\mathrm{~s}, 3 \mathrm{H}), 4.74\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{N} \cdot \mathrm{H}}=2 \mathrm{~Hz}\right)$.	$\begin{gathered} 53.2\left(\mathrm{CH}_{3}\right), 58.0(\mathrm{C}-2,4), \\ 106.1\left(\mathrm{t}, \mathrm{~J}_{\mathrm{C}-\mathrm{N}}=12 \mathrm{~Hz}\right)(\mathrm{C}-3), 156.1(\mathrm{C}=\mathrm{O}) . \end{gathered}$	$-16.1\left(\mathrm{CNO}_{2}\right)$
9 d	85	$3.68(\mathrm{~s}, 3 \mathrm{H}), 4.75\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{N} \cdot \mathrm{H}}=2 \mathrm{~Hz}\right)$.	$\begin{gathered} 53.1\left(\mathrm{CH}_{3}\right), 57.9(\mathrm{C}-2,4) \\ 106.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{N}}=12 \mathrm{~Hz}\right)(\mathrm{C}-3), 156.6(\mathrm{C}=\mathrm{O}) . \end{gathered}$	-16.1($\left.\mathrm{CNO}_{2}\right)$

NMR Chemical Shifts (ppm) ${ }^{2}$

$5.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CH}}=5 \mathrm{~Hz}\right)(\mathrm{C}-2,4)$.
$5.24\left(\mathrm{t}, \mathrm{J}_{\mathrm{NH}}=2 \mathrm{~Hz}\right)(\mathrm{C}-2,4)$.
$5.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{NH}}=2 \mathrm{~Hz}\right)(\mathrm{C}-2,4)$.
品萌
z

$-4.3\left(\mathrm{NO}_{3}\right)$
$-4.3\left(\mathrm{NO}_{3}\right)$
$-18.0\left(\mathrm{CNO}_{2}\right)$
$-18.0\left(\mathrm{CNO}_{2}\right)$

$(t \tau-\rho)(s) b \tau c s$
$\overline{H_{1}}$

	NMR Chemical Shifts $(\mathrm{ppm})^{2}$
$\stackrel{1}{\mathrm{H}}$	${ }^{13} \underline{\mathrm{C}}$
$5.24(\mathrm{~s})(\mathrm{C}-2,4)$.	$53.8(\mathrm{C}-2,4), 106.8(\mathrm{C}-3)$

Unheated Fragmentation of 1,3,3-Trinitroazetidines Using Electron Impact Ionization

※

Precursor Ion
$\mathrm{MW}(\mathrm{P})$
$\left(\mathrm{P}-\mathrm{NO}_{2}\right)^{+}$
$\left(\mathrm{P}-\mathrm{HNO}_{2}\right)^{+}$
$\left(\mathrm{P}-\mathrm{NO}_{2}-\mathrm{NO}\right)^{+}$
$\left(\mathrm{P}-2 \mathrm{NO}_{2}\right)^{+}$
$\left(\mathrm{P}-\mathrm{HNO}_{2}-\mathrm{NO}_{2}\right)^{+}$
$\left(\mathrm{P}-2 \mathrm{HNO}_{2}-\mathrm{NO}\right)^{+}$
Azetidine Ring

Unheated Fragmentation of $1,3,3-$ Trinitroazetidines Using Chemical lonization

등 흥
そた多

ACKNOWLEDGEMENTS

This work was performed under the auspices of the Office of Naval
Research and the U. S. Department of Energy. The authors are grateful to Drs. T.
G. Archibald and D. G. Ott for many helpful discussions and suggestions.

REFERENCES

1. M. A. Hiskey and M. D. Coburn, "Synthesis of 1,3,3-Trinitroazetidine", U. S. Patent 5,336,784 (1994).
2. M. A. Hiskey and M. D. Coburn, "A More Efficient Method of Preparing 3,3Dinitroazetidine", LA-12587-MS (1993).
3. T. G. Archibald, R. Gilardi, K. Baum, and C. George, J. Org. Chem., 55, 2920 (1990).
4. D. Gurne, L. Stefaniak, T. Urbanski, and M. Witanowski, Tetrahedron, 20, Suppl. 1, 211 (1964).

[^0]: ${ }^{2}$ Spectra determined as methylsulfoxide- d_{6} solutions. The natural abundance ${ }^{15} \mathrm{~N}$-NMR spectrum of 2 was obtained on a saturated solution containing chromium(III) acetylacetonate. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are relative to tetramethylsilanc $=0$. All ${ }^{i s} \mathrm{~N}$ shifts are relative to and upfield of external nitromethane $=0$.

